Ученые создали «умный» стабилизатор напряжения, ускорив реакцию системы на 58%

15.01.2026, 8:34, Разное
  Поддержать в Patreon

Современные электронные устройства — от бытовой техники до сложных автоматизированных систем — напрямую зависят от качества электропитания. Для их корректной и безопасной работы важно, чтобы напряжение оставалось стабильным, даже если источник питания нестабилен. На практике это происходит довольно часто: аккумуляторы постепенно разряжаются, солнечные панели выдают разную мощность в зависимости от погоды, а нагрузка на устройство может резко меняться.

Все это приводит к колебаниям напряжения, которые способны ухудшить работу электроники или даже вывести ее из строя. Именно поэтому задача стабилизации напряжения остается актуальной и важной для современной техники.

Основа системы — электронный DC-DC преобразователь —универсальный «переводчик» энергии каждого электронного устройства, который может как повышать, так и понижать напряжение. Его работой управляет небольшой микроконтроллер, который постоянно измеряет выходное напряжение и сравнивает его с заданным заранее значением. Если оно отличается от нужного, система автоматически корректирует свою работу.

При этом важной особенностью в работе преобразователя считается электрическая развязка — изоляция, которая отделяет микроконтроллер от высоковольтных компонентов и повышает надежность и безопасность всей системы. Однако ее внедрение создает дополнительные технологические сложности. Ключевая проблема заключается в том, что один из элементов такой развязки — оптопара — работает нелинейно. Это означает, что изменение входного управляющего сигнала не вызывает прямого и равномерного изменения сигнала на выходе. В результате в классических системах управления возникают искажения и погрешности в стабилизации напряжения. Система либо запаздывает с реакцией, либо не может точно выйти на заданный уровень, что снижает общую эффективность и точность преобразователя.

Традиционное решение этой проблемы — использование аналоговых схем на операционных усилителях, которые сравнивают текущее выходное напряжение с необходимым. Однако такой подход не обеспечивает безопасности работы системы. Дело в том, что аналоговые схемы работают по жесткой, неизменяемой логике и не умеют подстраиваться под изменяющиеся со временем сигналы. В итоге резкие скачки и помехи способны не только вывести систему из строя, но и физически разрушить чувствительные компоненты устройств.

Ученые Пермского Политеха создали систему автоматизированного управления напряжением на базе нейронной сети. Она адаптируется под изменяющиеся колебания на входе и обеспечивает как точность, так и быстродействие. Такой подход позволяет свести погрешность стабилизации к минимуму, ускорить реакцию системы почти на 58% и более чем вдвое сократить вычислительные затраты по сравнению с традиционными методами. Статья опубликована в журнале «Электротехника».

Ключевой отличительной чертой предложенного решения стало применение адаптивной нейронной сети для готового преобразователя. Такая система способна учитывать нелинейности и погрешности, которые неизбежно возникают в реальных электронных компонентах. Со временем она адаптируется к конкретным условиям работы, компенсирует неточности измерений и изменения характеристик элементов, вызванные нагревом или старением. В результате выходное напряжение становится более стабильным, а процесс регулирования — более плавным.

— Одно из преимуществ нашей разработки — использование адаптивных алгоритмов управления. Структуру нейронной сети мы построили на базе персептрона — простой классической модели. Она работает следующим образом. В режиме реального времени микроконтроллер анализирует выходное напряжение преобразователя, сравнивает его с заданным значением и автоматически корректирует режим работы, — пояснил Вячеслав Никулин, доцент кафедры автоматики и телемеханики ПНИПУ.

Например, системе нужно получить на выходе напряжение ровно 15.0 вольт. Но из-за искажений оптопары микроконтроллер прибора «видит» меньшее значение (14.8 вольта) и ошибочно решает, что напряжения не хватает. Стандартная система управления увеличит напряжение, что на самом деле приведет к скачку до 15.3 вольта. При этом представленная адаптивная нейронная сеть, уже обученная компенсировать эту погрешность, работает иначе. Ее применение позволяет повышать точность стабилизации без ручной перенастройки.

— Чтобы доказать эффективность разработки, мы провели сравнение в среде компьютерного моделирования, а также с помощью натурного эксперимента. Мы создали две виртуальные копии: одну с интеллектуальным алгоритмом на основе адаптивной нейронной сети, а другую — с классической схемой управления. Оба алгоритма тестировались в одной и той же цифровой модели: в них подавались одинаковые «скачки» входного напряжения, имитирующие работу от нестабильного источника, например, солнечной панели. Далее в виртуальной среде и на реальном физическом прототипе фиксировались все ключевые параметры — точность выходного напряжения, скорость реакции на изменения и количество вычислительных итераций, необходимое для стабилизации, — дополнил Вячеслав Никулин.

Анализ показал, что система управления с адаптивной нейронной сетью превосходит классические решения по трем ключевым параметрам. Она обеспечивает высокую точность стабилизации выходного напряжения, то есть, в отличие от стандартных подходов, погрешность разработки стремится к нулю. Также при использовании интеллектуального управления с нейросетью повышается быстродействие системы на 58%. Это значит, что время, за которое напряжение выходит на заданный уровень, сократилось с 125 микросекунд до 79 микросекунд. Такое резкое уменьшение позволяет электронному устройству мгновенно адаптироваться к скачкам, что напрямую повышает его общую производительность. Кроме того, предложенный интеллектуальный алгоритм показал более высокую вычислительную эффективность. Для стабилизации напряжения ему потребовалось всего 24 итерации пересчета против 57 у классического подхода. Это значит, что система тратит существенно меньше ресурсов для достижения лучшего результата.

Представленная разработка открывает новые возможности применения элементов искусственного интеллекта в источниках питания и является перспективным направлением развития современной электроники. Предложенный подход позволяет создавать более надежные, адаптивные и энергоэффективные системы, которые могут найти применение в портативной технике, автономных источниках питания, робототехнике и других областях, где стабильность и качество электропитания играют ключевую роль.

Смотреть комментарии → Комментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

ПОСЛЕДНЕЕ

15.01 / Ученые выяснили, что на пищевые привычки мнение сверстников влияет так же, как экспертное

15.01 / ФСБ сообщила о выявлении британского разведчика, действовавшего под диплматическим прикрытием

15.01 / Тираннозавры взрослели до 40 лет

15.01 / Галапагосские морские львы продолжили пить материнское молоко даже после взросления

15.01 / На Гавайи переброшены самолеты-заправщики, официальное основание – учения ВВС США

15.01 / Дональд Трамп рассказал, что в 2016 году получил письмо от Владимира Жириновского с предложение поделить Гренландию

15.01 / ВСУ — ночью перехвачены 61 из 82 БПЛА. МО РФ — сбиты 34 беспилотника

15.01 / Безопасные химические вещества «встретились» в организме и стали опасными

15.01 / Генштаб ВСУ — данные о потерях армии РФ на 1422-й день войны

15.01 / Отличия лунного грунта, доставленного Китаем, от других образцов объяснили мегаударом

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: rybinskonline@gmail.com

Поддержать проект:

PayPal – rybinskonline@gmail.com
WebMoney – Z399334682366, E296477880853, X100503068090

18+ © 2026 Такое кино: Самое интересное о культуре, технологиях, бизнесе и политике