Ученые объяснили физический принцип, стоящий за развитием рака и старением клеток
Управление судьбой клетки — это фундаментальная задача, которая лежит в основе двух наиболее перспективных и сложных направлений: регенеративной медицины и онкологии. Стремительный рост глобального рынка геномики, объем которого измеряется десятками миллиардов долларов, наглядно отражает масштаб усилий, направленных на расшифровку и управление генетической информацией, как для лечения рака, так и для регенерации тканей.
Однако за этими практическими задачами стоит более глубокая научная проблема. Клетки нашего тела, имея идентичный набор генов, могут выполнять совершенно разные функции: одни становятся нейронами, другие — клетками мышц, третьи — иммунными.
До сих пор биологи описывали это явление точечно, на уровне молекул. Например, какие белки включают какие гены, какие химические сигналы запускают те или иные процессы. Однако главная задача заключается в поиске механизма, который обеспечивает не случайные, а строго организованные изменения в клетке. Чтобы переключиться из одного состояния в другое (например, из деления в старение), сотни и тысячи генов, разбросанных по всей ДНК, должны поменять свою активность синхронно.
Современные подходы, как правило, сосредоточены на анализе отдельных молекулярных «элементов» — белков и химических модификаций ДНК. Эти исследования дают детальное объяснение, какие факторы могут влиять на конкретные гены, но не раскрывают принципов, по которым вся система работает как единое целое. Остается нерешенным вопрос о механизме, который обеспечивает синхронную перестройку тысяч генов. Без понимания этого принципа знание о ключевых процессах — от развития организма до возникновения рака — остается неполным, что существенно ограничивает возможности для создания новых методов диагностики и терапии.
Ученые Пермского Политеха создали математическую модель, объясняющую, как физическое состояние ДНК определяет судьбу клетки. Исследование показало, как молекула самоорганизуется и контролирует свое поведение. Это открывает новый путь к лечению онкологических заболеваний. Статья опубликована в журнале International Journal of Molecular Science.
Как известно, судьба клетки определяется поведением тысяч генов, которые меняют свои состояния в строго определенной последовательности. Чтобы ген экспрессировал (реализовал заложенную в него наследственную информацию), его участок на ДНК должен физически «открыться». То есть разорвать водородные связи молекулы в определенном месте, чтобы «код» стал доступен для считывающих белков. Есть и обратное, закрытое состояние, когда ген остается неактивным и недоступным для «прочтения». Судьба клетки — стать нервной, мышечной или раковой — это и определяется результатом кооперированных изменений состояний всех участков ДНК. Нарушение порядка в этом процессе может привести к появлению опухолей, преждевременной гибели гена или остановке нормального развития.
Само по себе «раскрытие» — это локальное событие в определенном домене молекулы (структурно обособленной части), которое не объясняет, как оно может влиять на другие, далекие участки. Раньше при изучении этого процесса исследователи в первую очередь смотрели на химические процессы. Но этого оказалось недостаточно, чтобы объяснить слаженность, с которой тысячи генов переключаются одновременно из одного состояния в другое.
Ученые ПНИПУ предположили, что решение кроется именно в физических свойствах самой молекулы. Поскольку ДНК — это биологический кристалл, любое локальное изменение влияет на общее механическое напряжение во всей цепочке. Именно оно, распространяясь как волна, может физически влиять на соседние гены, облегчая или затрудняя их «раскрытие». Чтобы проверить эту идею, исследователи вместо привычного изучения отдельных участков начали рассматривать ДНК как единую систему, где изменение в одном месте влияет на остальные.
Ученые выдвинули гипотезу, что именно через эту физическую взаимосвязь, через распространение напряжения, и достигается глобальная координация работы тысяч генов.
Для проверки этой идеи эксперты создали математическую модель, где рассмотрели полноразмерную молекулу ДНК человека. Они предположили, что каждый участок может находиться в одном из трех ключевых состояний: стабильном, неустойчивом, а также в критическом. В биологии ранее уже были экспериментальные указания на то, что гены могут вести себя подобным образом. Именно поэтому ученые ПНИПУ при создании модели интерпретировали это как свидетельство аналогичного поведения на уровне молекул.
Функции плотности вероятности для случаев бистабильного, метастабильного и критического состояний ДНК / © Пресс-служба ПНИПУ
— Ключевым шагом моделирования стало введение трех разных режимов, в которых может находиться каждый участок ДНК: стабильного, неустойчивого и критического. Мы предположили, что они отражают фундаментальные фазы в жизни генома, влияющие на сценарии определения клеточной судьбы. Кроме того, мы определили структурный параметр, от которого зависит, в каком из этих трех состояний находятся фрагменты ДНК. В стабильном состоянии участок «закрыт», в неустойчивом он готов переключиться от малейшего сигнала, а в критическом открывается и может запустить цепную реакцию, которая способна перестроить активность по всему геному, — объяснил Александр Никитюк, доцент кафедры «Математическое моделирование систем и процессов» ПНИПУ.
Моделирование подтвердило, что когда участки начинали открываться, вся молекула начинала сама «подталкивать» соседние участки к тому же. Кроме того, численные результаты показали, что ДНК ведет себя как единый механизм, а преобразование в одном домене запускает волну скоординированных изменений. Этот кооперативный эффект объясняет, как клетка может одновременно переключать тысячи генов, быстро меняя свое состояние — например, начиная делиться или, наоборот, стареть.
Чтобы проверить свои расчеты, ученые сопоставили предсказания своей разработки с реальными экспериментальными данными по работе с разными типами клеток — от эмбриональных до раковых. Статистические показатели, которые дала их физическая модель, совпали с теми, что получили биологи ранее. Это доказывает, что предложенный механизм действительно отражает универсальные принципы, лежащие в основе регуляции генома.
— Одно из самых важных следствий исследования — физическое объяснение природы онкологии. Согласно модели, раковая клетка — это та, что «застряла» в состоянии деления из-за недостатка открытых или критических участков ДНК, что блокирует нормальное развитие и переход в новое состояние. В здоровых же клетках этих участков много, что обеспечивает упорядоченную «каскадную» смену состояний — явление, которое мы назвали «каскадом критичности». В раке этот каскад нарушен. Этот результат открывает путь к поиску новых терапевтических стратегий, направленных не на уничтожение, а на «сдвиг» ее внутреннего состояния, заставляя либо созреть, либо умереть. Кроме того, понимание механизмов переключения состояний молекул может изменить регенеративную медицину, сделав процессы перепрограммирования клеток для терапии более управляемыми и эффективными, — дополнил Александр Никитюк.
Схематические представления ДНК с открытым состоянием и каскада критичности ДНК с открытыми состояниями / © Пресс-служба ПНИПУ
Исследование ученых показывает, что ключевые явления жизни, такие как принятие клеткой решения о своей судьбе, подчиняются универсальным законам, которые можно описать количественно. Следующий практический шаг — разработка методов для идентификации значений структурного параметра в живых клетках. Это откроет возможность для прямой проверки предсказаний модели и заложит основу для ее будущего практического применения в медицине и биотехнологиях.