Ученые научились рассчитывать «старение» углеродных протезов суставов

15.12.2025, 8:39, Разное
  Поддержать в Patreon

Во всем мире миллионы людей живут с искусственными суставами — высокотехнологичными устройствами, которые заменяют поврежденные места, возвращая человеку способность двигаться без боли. Золотым стандартом в лечении травм сустава считается его полная замена на эндопротез — сложную конструкцию, имитирующую естественную анатомию и функции. По данным на 2024 год, объем мирового рынка таких операций оценивался в 7,9 млрд долларов. Ожидается, что к 2034 году этот показатель достигнет 11,4 млрд.

Традиционные металлические имплантаты, хотя и применяются почти повсеместно, имеют фундаментальный недостаток: их жесткость значительно превышает жесткость натуральной кости. Это приводит к «экранированию напряжений» – кость, не получая привычной нагрузки, начинает рассасываться, а протез расшатывается. Кроме того, ионы металлов могут накапливаться в тканях, вызывая аллергии и воспаления. Все это сокращает срок службы имплантата до 10-15 лет, обрекая пациентов, особенно молодых, на повторные операции.

Альтернативой в медицине сейчас выступают угле-углеродные композиционные материалы (УУКМ). Их главное преимущество в том, что благодаря идеальному совпадению жесткости с костью, они не приводят к ее ослаблению и рассасыванию под нагрузкой. Этот материал не вызывает аллергии и коррозии, а также рентгенопрозрачен, что не мешает проведению МРТ и КТ-диагностики после операции.

Однако такие протезы имеют сложную, неоднородную структуру и состоят из хаотично расположенных микроскопических кристаллов искусственного углерода. При нагрузке, даже незначительной (например, при случайном спотыкании), эти частицы могут повреждаться, что меняет свойства материала в целом.

Существующие методы расчета прочности имплантатов часто строятся на допущении, что у них однородная и идеальная структура. Такой подход дает лишь примерную оценку того, как конструкция будет вести себя под нагрузкой. Однако для сложных материалов, как угле-углеродные композиты, это допущение становится критической ошибкой. Их прочность в долгосрочной перспективе зависит именно от микроскопических процессов внутри материала: от того, как зарождаются и развиваются мельчайшие дефекты между отдельными кристаллами.

Ученые Пермского Политеха создали вычислительную модель, которая позволяет точно оценить, сколько нагрузки сможет выдержать и как долго прослужит искусственный сустав из углеродного композита. Статья опубликована в научном журнале «Известия Юго-Западного государственного университета».

В основе разработки лежит двухуровневый подход, который анализирует имплантат одновременно на уровне микроструктуры материала и на уровне целой конструкции. Это позволяет увидеть, как невидимые повреждения влияют на прочность всей детали.

Для первого, микроскопического уровня, ученые разработали программный алгоритм, который рассчитывает, как деформируется каждый кристаллик в составе углеродного композита. На практике он делает несколько ключевых вещей. Во-первых, считает риски для каждой частицы материала, проверяя четыре «критерия» — условия, при которых они могут сломаться, например, от слишком сильного растяжения или сдвига. Во-вторых, он оценивает масштаб повреждений: определяет, какая доля кристалликов уже разрушена, какая — частично повреждена, а какая еще цела.

Второй уровень моделирует всю бедренную часть эндопротеза как готовую деталь в окружении кости. Этот компонент выбран потому, что на него приходится основная механическая нагрузка при ходьбе, беге и любом движении тела. Он также подвержен самым сложным типам деформации, поэтому прогноз поведения именно бедренной части нужен для общей надежности протеза.

Для реализации макроскопического уровня ученые создали детальную 3D-модель в инженерном программном комплексе. В качестве основы они взяли анатомически корректную геометрию бедренной кости и эндопротеза. В эту модель эксперты добавили нагрузку (как при ходьбе), а программа рассчитала, как деформируется вся система и где возникают самые опасные напряжения.

— Вся работа происходит в виде циклического процесса, который имитирует постепенное накопление повреждений в имплантате. На каждом шаге программа рассчитывает, как деформировалась вся система, и эти данные передаются в микро-модель. Далее она анализирует, привели ли такие нагрузки к повреждению кристаллов внутри материала или нет. Если деформации обнаруживаются, программа «ухудшает» свойства композита именно в соответствующей зоне обнаружения дефектов. После этого новый расчет выполняется уже для слегка «подпорченного» имплантата. Такой цикл повторяется много раз, пока напряжение в модели не достигнет предела прочности, — прокомментировал Егор Разумовский, аспирант кафедры «Механика композиционных материалов и конструкций» ПНИПУ.

Практический результат работы — детальная картина постепенного разрушения имплантата. Моделирование выявило четыре области в бедренном компоненте, где произошло критическое накопление повреждений. Это означает, что протез теряет прочность не равномерно и не мгновенно, а через последовательное ослабление нескольких зон.

Области бедренного компонента эндопротеза тазобедренного сустава, в которых пироуглеродная матрица повреждена / © Пресс-служба ПНИПУ

Чтобы показать этот процесс, программа построила специальный «ступенчатый» график. Он отразил процесс потери жесткости протеза: когда в одной из зон накопилось много микроповреждений, показатель резко упал. Таким образом модель указывает на псевдопластическое поведение углеродного композита. Это значит, что он не ломается резко, а терпит внутренние повреждения, перераспределяет нагрузку и продолжает функционировать, постепенно теряя жесткость. Теперь инженеры смогут увидеть, в каких именно зонах и в какой последовательности накапливается усталость материала. Это позволит перейти к целенаправленному укреплению слабых мест и прогнозированию срока службы для разных пациентов.

Важно отметить, что проведенное исследование — уникальное в своей области. В мировой научной литературе отсутствуют прямые аналоги разработки, где так же глубоко и системно изучается накопление повреждений в эндопротезах с помощью моделирования. Поэтому основным способом проверки стало сопоставление прогнозов модели с реальными экспериментальными данными, полученными в рамках предыдущих исследований. Самым главным показателем эффективности стало совпадение картины разрушения. Модель предсказала участки, где несущая способность падает, и они точно совпали с реальными местами повреждений в испытанных изделиях. Это подтверждает, что предложенная модель, пусть и упрощенная, но она верно отражает ключевые закономерности разрушения.

Главное преимущество модели — ее вычислительная мощность. Обычное моделирование микроструктуры настолько сложно для компьютера, что позволяет анализировать лишь несколько сотен или тысяч частиц. Разработанная программа работает с выборкой в миллионы элементов, что делает статистику микроразрушений более полной и достоверной.

— Итоговый характер деформирования, предсказанный расчетами — а именно последовательное накопление повреждений, — совпадает с поведением образцов углерод-углеродного композита при проводимых ранее испытаниях. Это показывает, что разработка корректно описывает физику процесса разрушения на всех масштабах — от микроскопических трещин до макроскопической потери жесткости всей конструкции. В дальнейшем такой инструмент инженеры и медики смогут использовать для виртуального тестирования новых конструкций имплантатов, прогнозируя их срок службы и выявляя слабые места еще на этапе проектирования, — отметил Вячеслав Шавшуков, кандидат физико-математических наук, доцент кафедры «Механика композиционных материалов и конструкций» ПНИПУ.

Созданную модель можно использовать не только для оптимизации создания протезов, что значительно сократит время и стоимость разработки, а также для углубленной оценки безопасности и сертификации, основанной на понимании долговременного поведения композитов. Такой двухуровневый подход может послужить методической основой для анализа разрушения других перспективных материалов в экстремальных условиях, что в конечном итоге повышает безопасность пациентов и стандарты медицинских технологий.

Смотреть комментарии → Комментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

ПОСЛЕДНЕЕ

15.12 / ФБР — сорван план терактов в новогоднюю ночь в Лос-Анджелесе

15.12 / Стивен Уиткофф: «Грузовик мирного урегулирования ещё никогда не был так близок к столбику»

15.12 / Медведи в Италии стали менее агрессивными из-за соседства с человеком

15.12 / Новогодняя атмосфера: как выбрать безопасную гирлянду

15.12 / Древние растения научились нагревать шишки для привлечения насекомых за миллионы лет до появления цветов

15.12 / По церкви на каждые 100 жителей: администрация Краснодара утвердила храмостроительную стратегию «Благодать-2030»

15.12 / В Москве начнут выпускать батарейки из старых элементов питания

15.12 / Роман Ротенберг возглавит хоккейную сборную Финляндии на Олимпиаде

15.12 / Ученые разработали сенсор для «электронной кожи», который одновременно измеряет давление и температуру

15.12 / Кулинарный помощник Cube o1 сделает готовку простой и доступной каждому

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: [email protected]

Поддержать проект:

PayPal – [email protected]
WebMoney – Z399334682366, E296477880853, X100503068090

18+ © 2025 Такое кино: Самое интересное о культуре, технологиях, бизнесе и политике