Ученые из России заставили пластик лучше проводить ток

12.08.2025, 11:33, Разное
  Поддержать в Patreon

Результаты исследования опубликованы в научном журнале Physical Chemistry Chemical Physics. Металлорганический комплекс [Ni(Salen)], по словам ученых, рассматривается в качестве эталонного представителя комплексов переходных металлов с лигандами – основаниями Шиффа саленового типа. Его функциональные производные (полимеры) обладают рядом уникальных свойств, среди которых высокая проводимость, термостабильность, электрохромизм (изменение цвета), селективная гетерогенная каталитическая активность и другие. Благодаря этому они могут использоваться в электронике, сенсорике, энергонакопителях и катализе.

Ученые Санкт-Петербургского государственного университета совместно с коллегами из других научных организаций идентифицировали ключевые структурные единицы (фрагменты), определяющие свойства как исходного комплекса [Ni(Salen)], так и образующегося из него полимера. Это открытие позволило глубже понять механизм полимеризации [Ni(Salen)], дискуссии вокруг которого не утихают на протяжении последних 20 лет, что подчеркивает важный вклад данного исследования в развитие современной химии.

Врезка: Ранее ученые этой научной группы разработали метод соединения многостенных углеродных нанотрубок с титановой подложкой. Созданный подход позволяет обойтись без полимерных связующих и может быть использован для разработки новых композитных электродных материалов суперконденсаторов с улучшенными характеристиками.

В СПбГУ выявили механизм разрушения барьера кишечного эпителия радиацией Биологи Санкт-Петербургского университета выяснили, что ионизирующая радиация повреждает клаудин-2 – ведущий регулятор барьерных свойств кишечного эпителия, и выявили перспективный метод профилакти… naked-science.ru

«Полученные нами результаты способствуют формированию фундаментальных знаний, необходимых для целенаправленного создания новых функциональных материалов на основе poly-[Ni(Salen)] и родственных систем. Мы впервые детально изучили, как изменяется структура координационного центра [NiO2N2] при переходе от комплекса [Ni(Salen)] к его полимеру, а также какие структурные единицы отвечают за ключевые свойства этих систем», — объяснил старший научный сотрудник кафедры химии твердого тела СПбГУ Петр Корусенко.

По его словам, в процессе электрохимического окисления центральная часть молекулы [Ni(Salen)] — координационный центр [NiO₂N₂] — искажается вследствие изменений в атомно-электронном строении саленового лиганда. Однако при возвращении системы в нейтральное состояние ее структура практически полностью восстанавливается до исходной плоско-квадратной геометрии. Этот результат позволяет глубже понять детали процесса полимеризации комплекса.

Ученые СПбГУ обнаружили, что комплекс [Ni(Salen)] в конденсированной фазе состоит из d-d-стэкоподобных димеров, а в полимере poly-[Ni(Salen)] эти своеобразные «строительные блоки» соединяются через атомы углерода фенольных фрагментов (C6H5O) в тетрамеры с образованием протяженной трехмерной сети. Также было установлено, что противоионы электролита, адсорбируемые при электрохимической полимеризации [Ni(Salen)], влияют на зарядовое состояние атома никеля в координационном центре. Этот эффект ранее не описывался в литературе.

В ближайших планах ученых — изучение особенностей полимеризации [Ni(Salen)] на углеродных нанотрубках для создания эффективных электродов аккумуляторов и суперконденсаторов.

Врезка: Экспериментальные исследования были проведены с использованием измерительных станций «Структурное материаловедение» и «НаноФЭС» источника синхротронного излучения «КИСИ-Курчатов». Квантово-химические расчеты проводились в Ядерном университете «МИФИ» и Южном федеральном университете.

Смотреть комментарии → Комментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: [email protected]

Поддержать проект:

PayPal - [email protected]; Payeer: P1124519143; WebMoney – Z399334682366, E296477880853, X100503068090

18+ © 2025 Такое кино: Самое интересное о культуре, технологиях, бизнесе и политике