Под антарктическими льдами: искусственный интеллект научили обнаруживать и классифицировать океанические вихри
Южный океан, омывающий берега Антарктиды, — важнейший элемент климатической системы планеты. Здесь происходит колоссальный тепло- и газообмен между атмосферой и глубинами Мирового океана, а также зарождаются тысячи океанических вихрей, которые, словно невидимые шестеренки, перемещают огромные массы соли, тепла и биогенов на большие расстояния.
Однако важнейшая и наименее изученная часть этого механизма — прикромочная ледовая зона. Это постоянно меняющийся, хаотичный коктейль из открытой воды, битого и плотного льда, где рождаются и умирают бесчисленные вихри. Именно они во многом определяют, как быстро тает лед и как океан взаимодействует с атмосферой. До сих пор эта зона оставалась настоящим «белым пятном» для климатологов. Традиционные спутниковые методы исследования вихрей, такие как альтиметрия, измеряющая уровень океана, бессильны среди льдов. Единственным надежным инструментом остаются радиолокационные спутники, способные видеть сквозь облака и полярную ночь. Однако анализ тысяч получаемых изображений вручную — это титанический, практически невыполнимый труд, который тормозил исследования на десятилетия.
Карта региона исследования. Красным выделена прикромочная ледовая зона у побережья Восточной Антарктиды — важнейшая с климатической точки зрения область, где происходит активное формирование океанических вихрей. Именно спутниковые снимки этого региона были использованы для обучения и тестирования нейросети / © Frontiers in Marine Science
Столкнувшись с этим вызовом, команда исследователей поставила перед собой амбициозную задачу: научить искусственный интеллект делать то, на что у человека ушли бы годы — автоматически находить, классифицировать и каталогизировать вихри в прикромочной зоне Антарктики на радарных снимках. Работа опубликована в журнале Frontiers in Marine Science.
Для этого ученые создали уникальный обучающий набор данных. Они вручную проанализировали и разметили 234 спутниковых снимка высокого разрешения, сделанных аппаратом Sentinel-1 над Восточной Антарктидой. На каждом снимке были тщательно оконтурены все видимые вихри, с указанием их типа — циклонического (вращающегося против часовой стрелки в Южном полушарии) или антициклонического. Этот набор данных сам по себе — научное достижение, впервые систематизирующее информацию о вихревой активности в данном регионе. В качестве «ученика» выбрали одну из самых передовых нейросетевых архитектур для распознавания объектов — YOLOv11. Модель работает подобно человеческому зрению: сначала ее «хребет» выделяет на изображении общие низкоуровневые признаки, затем «шея» собирает их в сложные композиции, и, наконец, «голова» принимает решение, что именно она видит, и выделяет местоположение объекта на снимке.
Статистический портрет антарктических вихрей. (a) Карта географического расположения циклонических (синий) и антициклонических (красный) вихрей, использованных для обучения модели. (b) Распределение вихрей по размерам, показывающее доминирование малых циклонов и крупных антициклонов. (c) Пример антициклонического вихря на спутниковом снимке с отмеченным центром / © Frontiers in Marine Science
Никита Сандалюк, старший научный сотрудник лаборатория арктической океанологии МФТИ, рассказал о своей работе: «Прикромочная зона Антарктики долгое время была для нас своего рода «слепой зоной». Мы знали, что там происходят активные вихревые процессы, но у нас не было инструментов для их систематического изучения. Ручной анализ отдельных снимков — это капля в море. Наша работа показывает, что искусственный интеллект может стать нашими глазами в этих сложных условиях. Мы не просто научили модель находить вихри на спутниковых снимках, мы научили ее различать тип вихря (циклонический или антициклонический)», что критически важно для понимания того, как они влияют на транспорт тепла и процессы ледотаяния».
Нейросеть в действии: примеры распознавания вихрей. Результаты работы модели YOLOv11 на двух спутниковых снимках одного региона, сделанных с разницей в 9 дней. Синие и красные рамки — правильно выделенные моделью циклоны и антициклоны. Желтая рамка (а) — вихрь, обнаруженный нейросетью, но пропущенный при ручной разметке / © Frontiers in Marine Science
Главной инновацией работы стало применение дополнительного модуля SAHI (Slicing Aided Hyper Inference). Проблема в том, что спутниковые снимки огромны, а вихри, особенно на начальной стадии своего развития, могут быть очень маленькими. Вместо того чтобы пытаться рассмотреть муравья на огромной панораме, нейросеть с модулем SAHI берет «лупу»: она нарезает гигантское изображение на множество небольших перекрывающихся фрагментов, анализирует каждый из них в высоком разрешении, а затем бесшовно сшивает результаты в общую картину. Этот подход позволил повысить точность обнаружения небольших вихрей на 50% — колоссальный скачок в качестве анализа.
Никита Сандалюк также добавил: «Интеграция модуля SAHI стала решающим шагом. Она позволила нам увидеть целый мир субмезомасштабных вихрей — небольших, но очень энергичных структур, которые ранее просто терялись на фоне ледяного хаоса. Конечно, у модели есть свои ограничения. Иногда она принимает за вихри круглые структуры на ледниках. В будущем мы решим эту проблему, добавив географическую маску, которая просто «запретит» нейросети искать вихри на суше. Но уже сейчас мы получили инструмент, способный обрабатывать данные в масштабах, о которых раньше можно было только мечтать».
Результаты исследования превзошли ожидания. Нейросеть уверенно распознает вихри в самых разных условиях: как в плотных ледяных полях, так и в зонах с разреженным льдом, демонстрируя высокую точность и надежность.
Демонстрация работы нейросети на тестовых данных. Модель успешно распознает вихри в различных условиях: (a) в зоне с высокой концентрацией льда, (b) при одновременном присутствии вихрей разных масштабов, и (c, d, e) в области хаотичной мелкомасштабной динамики / © Frontiers in Marine Science.
Автоматизированный мониторинг позволит впервые собрать многолетнюю статистику вихревой активности, понять механизмы их генерации и влияние на ледяной покров. Эти данные жизненно необходимы для совершенствования климатических моделей, которые до сих пор очень приблизительно описывают процессы в прикромочной ледовой зоне. В будущем команда планирует расширить исследование, включив данные за другие годы для изучения межгодовой изменчивости, и в конечном итоге создать общедоступный сервис для мониторинга вихревой динамики в полярных областях.