Пермские ученые нашли доступный способ очистки выбросов углекислого газа с помощью микроводорослей
Повышение концентрации CO₂ в атмосфере — общепризнанная причина глобального потепления. По данным The Energy Institute (EI), в 2024 году мировые выбросы парниковых газов достигли нового исторического максимума, составив 40,8 миллиарда тонн. Промышленный сектор, включая металлургию и химическое производство, остается одним из основных источников этих загрязнений. Несмотря на переход на возобновляемую энергетику, многие предприятия продолжают генерировать огромные объемы CO₂, что требует разработки технологий его утилизации прямо на месте образования.
Основная сложность заключается в том, что промышленные выбросы представляют собой сложные смеси. Помимо CO₂ они могут содержать метан, оксиды азота, оксид углерода, диоксид серы и другие соединения, токсичные для живых организмов.
На сегодняшний день существуют различные технологии утилизации выбросов. К примеру, химический метод (пропускание газов через жидкость) требует огромных затрат. Чтобы извлечь чистый CO₂, воду нужно постоянно греть и восстанавливать, что «сжигает» большое количество энергии. Другой способ — закачка выбросов в подземные пласты, сталкивается с рисками долгосрочной герметичности. Грунт может оказаться ненадежным, приводя к постепенным утечкам, а транспортировка углекислого газа несет дополнительные экологические риски.
Биологические методы, в частности использование микроводорослей, считаются наиболее перспективными вариантами. Они способны в процессе фотосинтеза поглощать загрязнения без вреда для себя и производить ценную биомассу, которую можно использовать как сырье, например, для удобрений. Однако создание и поддержание специализированных видов микроорганизмов, устойчивых к промышленным условиям, — дорогостоящий и длительный процесс.
Сложность метода заключается в том, что для создания специальных видов водорослей «с нуля» ученым приходится годами работать в лабораториях, чтобы вывести организмы, устойчивые к технологическим выбросам. Этот процесс требует сложного оборудования, стерильных условий и постоянного контроля, что делает технологию малодоступной для большинства предприятий.
Более простой альтернативой может стать использование готовых препаратов на основе микроводорослей. Они представляют собой промышленно выращенную биомассу, спрессованную в таблетки или порошки. Иными словами, это «готовый материал» для выращивания микроорганизмов.
После помещения таких препаратов в питательную среду клетки «просыпаются» и начинают размножаться. Однако ключевая задача состоит в том, чтобы найти не просто жизнеспособные водоросли, а те, которые смогут адаптироваться к агрессивной среде производств и создать недорогую систему утилизации CO₂.
Ученые Пермского Политеха определили доступный и эффективный биопрепарат из микроводорослей, который способен поглощать углекислый газ из промышленных выбросов. Это позволит применять его для создания систем очистки загрязнений без лабораторного выращивания. Статья опубликована в журнале «Экология и промышленность России».
Эксперты исследовали шесть коммерческих биопрепаратов с микроводорослями, представленных на рынке: три с содержанием Chlorella sp. и три на основе Spirulina sp. Основной задачей было определить, сохранили ли клетки в этих препаратах способность к росту в питательных средах. Это связано с тем, что в процессе производства они подвергаются сушке и прессованию, что потенциально может привести к потере их жизнеспособности.
Фотографии микроводорослей разных торговых марок и составов, полученные из биопрепаратов (увеличение ×400) / © Екатерина Белик Источник пресс-служба ПНИПУ
— Порошок из добавок с микроводорослями поместили в питательный раствор для роста и наблюдали, как культуры адаптировались в биореакторах. Микроводоросли препарата с Chlorella sp под названием SPIRULINAFOOD продемонстрировали активное размножение одиночных клеток (биомасса увеличилась на 35 %), — рассказала Екатерина Белик, кандидат технических наук, доцент кафедры «Охрана окружающей среды» ПНИПУ.
На втором этапе исследования отобранная культура прошла проверку на устойчивость к углекислому газу. Ученые поставили эксперимент с двумя одинаковыми колбами по 1,1 литра, в каждой из которых выращивали водоросли. В одну постоянно подавали небольшое количество углекислого газа, а во второй образцы росли в обычных условиях без добавления CO₂.
— Эксперимент показал, что газы стимулировали рост биомассы. Через 18 дней добавление CO₂ привело к увеличению оптической плотности водорослей более чем в восемь раз. Это доказало, что данная культура может быть использована для очистки газов, — дополнила Екатерина Белик.
Следующим шагом стало моделирование условий, максимально приближенных к реальным промышленным выбросам. Подача газа в пробы с микроорганизмами в течение двух суток не подавила, а простимулировала их рост. Выбранные водоросли преобразовали выбросы в твердую биомассу.
В результате, культура «SPIRULINAFOOD» подтвердила высокую жизнеспособность и устойчивость к загрязнениям. В ходе теста она показала снижение концентрации CO₂ на 15%. Кроме того, наблюдалось значительное уменьшение содержания оксидов азота — опасных загрязнителей, образующихся при сжигании топлива.
Важным доказательством активности культуры стало повышение уровня кислорода в обработанных газах. Это говорит об интенсивном фотосинтезе — процессе, в ходе которого микроводоросли поглощают углерод и выделяют кислород.
Представленная технология решает сразу две задачи: утилизирует выбросы газов и производит растительную биомассу. Например, ее можно использовать в качестве органического удобрения в сельском хозяйстве, что соответствует принципам экономики замкнутого цикла и повышает рентабельность всей системы очистки.
Практическое применение разработки открывает новые перспективы для различных отраслей промышленности. Энергетические компании могут интегрировать установки в системы дымоудаления ТЭЦ. Нефтехимические предприятия получат эффективное решение для очистки сложных газовых смесей, содержащих метан и летучие органические соединения.