Искусственный интеллект обучили проектировать материалы с противоречивыми свойствами
Как разработать материал с противоречащими свойствами? Ключ к решению таких сложных задач кроется во внутренней архитектуре материала — его микроструктуре. Однако проектирование оптимальной трехмерной структуры вручную сталкивается с фундаментальной сложностью: количество возможных комбинаций и взаимосвязей между элементами настолько велико, что их анализ традиционными методами становится крайне трудоемким и длительным процессом.
Современные подходы к решению этой проблемы основаны на компьютерном моделировании, но и они имеют существенные ограничения. Наиболее распространенный метод — топологическая оптимизация — работает по принципу «разумного упрощения». Компьютер анализирует виртуальную модель детали, которая изначально представляет собой сплошной массив материала, и вычисляет, в каких областях напряжение минимально. Эти «спокойные» зоны считаются избыточными — подобно тому, как архитектор может убрать лишние перегородки в здании, не снижая его прочности. Система постепенно удаляет такой материал, оставляя только те элементы, которые действительно необходимы для сопротивления нагрузкам.
Такой подход позволяет получить надежную конструкцию, но требует огромных вычислительных мощностей и времени для каждого нового случая. Более современные методы используют базы данных известных материалов и алгоритмы машинного обучения, которые ищут закономерности в уже существующих структурах. Однако такие системы могут предлагать лишь вариации известных решений, не создавая принципиально новых материалов с уникальными свойствами.
Большинство методов работают с двумерными моделями или требуют огромных вычислительных мощностей. Кроме того, они часто генерируют структуры с нарушенной целостностью — например, с «висящими» элементами, которые невозможно воспроизвести в реальности.
Перспективное направление в решении этих проблем — генеративно-состязательные сети (GAN) — это особая архитектура искусственного интеллекта, где две нейросети работают вместе, словно дизайнер и критик. Одна нейросеть (генератор) предлагает новые варианты структур, а вторая (дискриминатор) оценивает, насколько они реалистичны. В результате такой совместной работы система учится создавать все более совершенные структуры.
Ученые Пермского Политеха усовершенствовали метод, создав первую в мире трехмерную версию известной архитектуры StyleGAN2. Если раньше подобные системы работали в основном с плоскими изображениями, то теперь алгоритм научился генерировать сложные объемные структуры. Их ключевое достижение — создание не просто случайных вариаций, а целого «пространства дизайна», где можно плавно менять параметры и получать работоспособные структуры. Статья опубликована в журнале StructuralandMultidisciplinaryOptimization.
Ученые провели первичное обучение нейросети на обширной библиотеке из пяти тысяч моделей пористых материалов — одних из самых сложных в проектировании. В процессе система проанализировала и усвоила фундаментальные принципы их построения — распределение твердых и пустотных областей, варианты соединения внутренних элементов и типичные особенности. Этот этап позволил искусственному интеллекту сформировать базовое понимание внутренней архитектуры образцов.
Для нахождения наилучших решений применяется генетический алгоритм, работающий по принципу естественного отбора. Он последовательно анализирует варианты строений материалов, оценивая их по целевым параметрам — прочности и плотности.
— На этом этапе формируется набор структур, в которых невозможно одновременно улучшить оба показателя: если мы пытаемся увеличить прочность, неизбежно возрастает плотность, и наоборот. Такие результаты считаются предпочтительными, поскольку они предлагают наилучшие возможные компромиссы между противоречивыми требованиями, — рассказывает Михаил Ташкинов, кандидат физико-математических наук, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ.
— Наша нейросеть не просто копирует или смешивает известные образцы, а действительно изобретает. Но главное — она делает это не хаотично. Все созданные варианты система автоматически раскладывает как бы «по полочкам» — в упорядоченное цифровое пространство, где похожие структуры находятся рядом. Это позволяет легко находить и сравнивать разные решения, что раньше было практически невозможным, — рассказывает Евгений Кононов, инженер-исследователь.
Представьте, что вы покупаете машину: нельзя одновременно получить максимальную скорость и минимальный расход топлива. Алгоритм ученых ПНИПУ находит все такие «предельные» варианты. Например, он показывает: «вот самая прочная структура для заданной легкости, а вот самая легкая для заданной прочности». Дальше этого предела улучшить уже ничего нельзя.
Результаты исследования показали высокую эффективность метода. Разработанная система смогла создать трехмерные микроструктуры, которые превзошли по характеристикам материалы из обучающей базы данных. При одинаковой плотности новые конструкции демонстрируют увеличение жесткости на 15-20% по сравнению с существующими аналогами.
Полученные результаты открывают новые возможности для создания современных пористых структур, которые могут применять в высокотехнологичных отраслях промышленности.