Электронный торнадо: как физики научились «читать» послания молекул в лазерном вихре

17.11.2025, 16:10, Разное
  Поддержать в Patreon

В сердце современной физики и химии лежит квантовая механика с ее парадоксальными, но реальными явлениями. Одно из них — туннелирование, способность частицы, например электрона, проходить сквозь энергетический барьер, который в классическом мире был бы для нее непреодолим. Когда на атом или молекулу направляют импульс сверхмощного лазера, его электрическое поле становится настолько сильным, что искажает атомный потенциал, создавая такой барьер. Электрон может «протуннелировать» сквозь него и вырваться на свободу — этот процесс называется туннельной ионизацией. Если использовать лазерный импульс с круговой поляризацией, где вектор электрического поля вращается, то вылетевший электрон подхватывается этим вихрем и его итоговое распределение по импульсу приобретает форму тора, или, проще говоря, «пончика». 

Геометрия этого электронного тора — его радиус и толщина — несет в себе богатейшую информацию о самой молекуле и процессе ионизации. Однако расшифровать это «послание» было крайне сложно из-за одной фундаментальной проблемы: ученые не могли с достаточной точностью определить, какова реальная напряженность электрического поля лазера в тот самый фемтосекундный миг взаимодействия с молекулой. Эта неизвестная величина была своего рода шифром, который не позволял прочитать скрытые в импульсном распределении фотоэлектронов данные.

Электронный тор — «отпечаток пальца» туннельной ионизации. (а) Схематическое изображение «пончикообразного» распределения фотоэлектронов по импульсу, вырванных из молекул вращающимся полем лазера. (b) и (c) Реальные экспериментальные данные, показывающие этот тор в пространстве импульсов (вид сбоку и сверху). Геометрические параметры этого тора — его основной радиус (p_max) и толщина поперечного сечения (σ_y) — несут в себе информацию о молекуле и силе лазерного поля  / © Physical Review Research

Команда физиков поставила перед собой задачу взломать этот код. Они хотели найти способ извлечь из одного и того же экспериментального измерения и информацию о молекуле, и точное значение воздействующего поля. В качестве объекта исследования ученые выбрали простейшую молекулу — водород (H₂). Исследователи использовали передовую экспериментальную установку, способную регистрировать трехмерные импульсы всех частиц, рождающихся в результате взаимодействия лазера с молекулой. Этот метод, известный как реакционный микроскоп или 3D-визуализация импульсов по совпадениям, работает как сверхскоростная камера для субатомного мира, позволяя после каждого лазерного выстрела восстановить полную кинематическую картину процесса. Результаты исследования опубликованы в журнале Physical Review Research.

Ключевой прорыв получилось достичь благодаря сочетанию высокоточного эксперимента и глубокого теоретического анализа. Исследователи поняли, что радиус электронного тора и его толщина по-разному зависят от двух неизвестных — напряженности поля и энергии ионизации. Разработав усовершенствованную теоретическую модель, которая учитывает тонкие неадиабатические эффекты (связанные с тем, что поле лазера вращается, а не остается статичным), они получили систему из двух независимых уравнений. Измеряя в эксперименте геометрию тора — его радиус и толщину, — они смогли решить эту систему и впервые однозначно определить обе искомые величины. 

На графике показана зависимость толщины электронного тора от его радиуса. Точки — это экспериментальные данные, полученные для ионов H₂⁺. Пунктирная линия (σ₀p₀) — предсказание простой адиабатической теории, которое очевидно расходится с результатами. Сплошная линия (σ₂p₁) — расчет по теоретической модели, предложенной авторами. Идеальное совпадение с экспериментом является прямым доказательством того, что их подход верен и позволяет точно «прочитать» данные, закодированные в геометрии тора  / ©  Physical Review Research

Полученные данные не только показали, что эффективная энергия ионизации водорода в сильном поле заметно отличается от своего стандартного значения, но и выявили еще более тонкий эффект. Оказалось, что эта энергия разная для двух разных сценариев распада: когда молекула водорода просто теряет электрон, превращаясь в ион H₂⁺, и когда она разрывается на два протона и электрон (H⁺ + H).

Олег Толстихин, ведущий научный сотрудник Международного центра теоретической физики им. А.А.Абрикосова МФТИ, прокомментировал: «Мы превратили давнюю проблему в ее же решение. Десятилетиями неизвестная напряженность лазерного поля была своего рода завесой, скрывавшей от нас детальную информацию о поведении молекулы. Наш метод использует форму распределения фотоэлектронов по импульсу  — этот самый тор, — чтобы одновременно измерить и само поле, и отклик молекулы на него. Мы буквально поднимаем эту завесу, превращая туннелирование в точный инструмент для изучения молекул на их естественных, аттосекундных временных масштабах».

Новый подход — настоящий прорыв, поскольку он переводит область исследований сильного поля из качественной в количественную. Вместо того чтобы говорить «распределение импульсов похоже на тор», ученые теперь могут с высокой точностью, до сотых долей атомной единицы, измерять фундаментальные параметры, закодированные в его форме. Это открывает дорогу для количественной визуализации сверхбыстрой динамики более сложных молекул, например, в ходе химической реакции, когда перестраиваются электронные орбитали и рвутся химические связи.

Полученные результаты имеют огромное значение как для фундаментальной науки, так и для будущих технологий. Они предоставляют мощный инструмент для проверки и уточнения самых современных теорий взаимодействия света с веществом. В перспективе эта методология может быть использована для создания «молекулярных фильмов» — покадровой съемки химических реакций с временным разрешением в десятки аттосекунд (аттосекунда — это 10^(-18) секунды). Это позволит не просто наблюдать за химией, но и потенциально управлять ею с помощью света, открывая новые горизонты в материаловедении, фотонике и биохимии.

Смотреть комментарии → Комментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: [email protected]

Поддержать проект:

PayPal - [email protected]; Payeer: P1124519143; WebMoney – Z399334682366, E296477880853, X100503068090

18+ © 2025 Такое кино: Самое интересное о культуре, технологиях, бизнесе и политике