Под контролем тепла: наноструктурированная поверхность позволила менять поляризацию света по команде

12.11.2025, 13:54, Разное
  Поддержать в Patreon

Эффект Фарадея, открытый почти два века назад, описывает вращение плоскости поляризации линейно поляризованного света при его прохождении через материал, намагниченный вдоль направления распространения света под действием внешнего магнитного поля. Это явление лежит в основе важнейших оптических устройств, таких как оптические изоляторы, заставляющие свет двигаться только в одном направлении, подобно диоду в электронике. Однако в большинстве материалов магнитооптические свойства — константа, «зашитая» в их структуру при изготовлении. Создать материал, чьими магнитооптическими характеристиками можно было бы управлять «на лету», — одна из ключевых задач современной фотоники, решение которой позволит перейти от статичных оптических элементов к полностью реконфигурируемым системам.

Чтобы решить эту задачу, команда ученых обратилась к концепции метаповерхностей — искусственных структур, чьи оптические свойства определяются не столько химическим составом, сколько геометрией наноструктур на их поверхности. Исследователи создали своего рода наноразмерный «бутерброд»: на тонкую пленку из магнитного материала (феррит-граната, легированного диспрозием и церием) они нанесли упорядоченный массив крошечных цилиндров из кремния. Диаметр каждого цилиндра составляет всего 280 нанометров. Работа опубликована в журнале Physical Review Applied. 

Эти кремниевые наноцилиндры работают как резонаторы, захватывая свет и многократно усиливая его взаимодействие с магнитной пленкой. Благодаря этому даже слабые собственные магнитооптические эффекты пленки многократно возрастают на определенных резонансных длинах волн.

Ключевое открытие ученые сделали, начав нагревать созданный образец. Оказалось, что даже небольшое изменение температуры кардинально меняет поведение метаповерхности. В ходе эксперимента, нагревая структуру от комнатной температуры (294 К, или 21°C) до 488 К (215°C), физики наблюдали поразительный эффект. На длине волны света 945 нанометров при комнатной температуре поляризация поворачивалась в одну сторону (условно, «влево» на -0.3 градуса). Однако по мере нагрева угол поворота сначала уменьшался до нуля, а затем начинал расти в противоположном направлении, достигая положительного значения (+0.1 градуса) при максимальной температуре. Таким образом, ученые впервые продемонстрировали возможность полного обращения знака эффекта Фарадея с помощью внешнего управления.

Ключевой результат: управление знаком вращения поляризации. На графике показана зависимость угла поворота поляризации света от его длины волны при разных температурах. Видно, как на длине волны около 945 нм при комнатной температуре (294 К, синяя пунктирная линия) поворот отрицательный. При нагреве до 488 К (розовая сплошная линия) он пересекает нулевую отметку и становится положительным. Это и есть эффект инверсии знака вращения / © P.V. Zorina et al. / Physical Review Applied, 2025

Полина Зорина, аспирантка МФТИ, научный сотрудник Российского квантового центра, прокомментировала: «Обычно, когда мы создаем метаповерхность, ее свойства, включая магнитооптический отклик, заданы раз и навсегда геометрией наноструктур. Нам удалось «оживить» метаповерхность, сделав ее управляемой. Нагрев немного меняет оптические свойства кремния и граната, но из-за резонансной природы нашей структуры даже эти малые изменения приводят к гигантскому сдвигу в магнитооптическом отклике. Самое поразительное — мы смогли не просто «приглушить» или «усилить» эффект, а полностью инвертировать его знак, что ранее было невозможно сделать в динамическом режиме. Это открытие — не просто красивая физика, оно имеет огромное прикладное значение. Мы продемонстрировали, что можно управлять светом с помощью другого луча света, который просто нагревает нужный участок. Это основа для полностью оптических переключателей и модуляторов. Кроме того, такая чрезвычайная чувствительность к температуре делает нашу метаповерхность идеальной платформой для создания миниатюрных, сверхточных сенсоров, способных улавливать тысячные доли градуса».

Новизна работы заключается не только в самом факте управления, но и в способе его реализации. Поскольку нагрев можно осуществлять с помощью сфокусированного лазерного луча, появляется возможность локально изменять свойства метаповерхности в областях размером в единицы микрометров.

Сфокусированный лазерный луч позволяет создавать на одном и том же чипе сложные пространственные «узоры» из областей с разным магнитооптическим откликом, которые можно перерисовывать в реальном времени.

Полностью оптическое управление светом. График демонстрирует, как можно управлять углом поворота поляризации сигнального лазера (ось Y) с помощью мощности другого, управляющего лазера, который нагревает метаповерхность (нижняя ось X). При достижении пороговой мощности происходит переключение знака вращения. Верхняя ось показывает аналогичный эффект самомодуляции, когда мощный сигнальный лазер сам себя нагревает и меняет собственную поляризацию / © P.V. Zorina et al. / Physical Review Applied, 2025

Практические применения предложенной метаповерхности многообразны. Помимо создания полностью оптических транзисторов, где один «управляющий» лазер меняет поляризацию другого, «сигнального», возможен и эффект самомодуляции. Достаточно мощный лазерный импульс может сам нагреть материал при прохождении через него и, таким образом, изменить свою собственную поляризацию. Кроме того, разработанная структура — высокочувствительный сенсор. Ее резонансы чувствительны не только к температуре, но и к показателю преломления окружающей среды, что позволяет детектировать присутствие мельчайших концентраций различных веществ в газе или жидкости. В будущем подобные управляемые метаповерхности могут стать ключевыми элементами для систем оптической обработки информации, лидаров и биосенсорных чипов.

Смотреть комментарии → Комментариев нет


Добавить комментарий

Имя обязательно

Нажимая на кнопку "Отправить", я соглашаюсь c политикой обработки персональных данных. Комментарий c активными интернет-ссылками (http / www) автоматически помечается как spam

Политика конфиденциальности - GDPR

Карта сайта →

По вопросам информационного сотрудничества, размещения рекламы и публикации объявлений пишите на адрес: [email protected]

Поддержать проект:

PayPal - [email protected]; Payeer: P1124519143; WebMoney – Z399334682366, E296477880853, X100503068090

18+ © 2025 Такое кино: Самое интересное о культуре, технологиях, бизнесе и политике